Quick Disproof of the Riemann Hypothesis

Jonathan W. Tooker

July 6, 2019

Abstract

In this brief note, we propose a set of operations for the affinely extended real number called infinity. Under the terms of the proposition, we show that the Riemann zeta function has infinitely many non-trivial zeros on the complex plane.

§1 Definitions

Definition 1.1 The number infinity, which like the imaginary number is not a real number, is defined as

$$
\lim _{x \rightarrow 0^{ \pm}} \frac{1}{x}= \pm \infty
$$

Definition 1.2 The real number line is a 1D space extending infinitely far in both directions. It is represented in set and interval notations respectively as

$$
\mathbb{R}=\{x \mid-\infty<x<\infty\} \quad, \quad \text { and } \quad \mathbb{R} \equiv(-\infty, \infty)
$$

Definition 1.3 A number x is a real number if and only if it is a cut in the real number line

$$
(-\infty, \infty)=(-\infty, x) \cup[x, \infty)
$$

Definition 1.4 The affinely extended real numbers are constructed as $\overline{\mathbb{R}}=$ $\mathbb{R} \cup\{ \pm \infty\}$. They are represented in set and interval notations respectively as

$$
\overline{\mathbb{R}}=\{x \mid-\infty \leq x \leq \infty\}, \quad \text { and } \quad \overline{\mathbb{R}} \equiv[-\infty, \infty]
$$

$\overline{\mathbb{R}}$ is called the affinely extended real number line.
Definition 1.5 A number x is an affinely extended real number $x \in \overline{\mathbb{R}}$ if and only if $x= \pm \infty$ or it is a cut in the affinely extended real number line

$$
[\infty, \infty]=[-\infty, x) \cup[x, \infty]
$$

Theorem 1.6 If $x \in \overline{\mathbb{R}}$ and $x \neq \pm \infty$, then $x \in \mathbb{R}$.

Proof．Proof follows from Definition 1．4．
Definition 1．7 Infinity has the properties of additive and multiplicative ab－ sorption：

$$
x \in \mathbb{R}, x>0 \quad \Longrightarrow \quad\left\{\begin{array}{l}
\pm x+\infty=\infty \\
\pm x \times \infty= \pm \infty
\end{array}\right.
$$

Proposition 1．8 Suppose the additive absorptive property of $\pm \infty$ is taken away when it appears as $\pm \widehat{\infty}$ ．Further suppose that $\|\widehat{\infty}\|=\infty$ and that the ordering is such that

$$
\begin{gathered}
n<\widehat{\infty}-b<\widehat{\infty}-a<\infty \\
-\infty<-\widehat{\infty}+a<-\widehat{\infty}+b<-n,
\end{gathered}
$$

for any positive $a, b \in \mathbb{R}, a<b<n$ ，and any natural number $n \in \mathbb{N}$ ．
Theorem $1.9 \widehat{\infty}$ is

$$
\pm \widehat{\infty}=\lim _{x \rightarrow 0^{ \pm}} \frac{1}{x}
$$

Proof．Proof follows from the $\|\widehat{\infty}\|=\infty$ condition given in Propositon 1．8．四
Theorem 1．10 If $x= \pm(\widehat{\infty}-b)$ and $0<b<n$ for some $n \in \mathbb{N}$ ，then $x \in \mathbb{R}$ ．
Proof．By the ordering given in Proposition 1．8，we have

$$
[\infty, \infty]=[-\infty, x) \cup[x, \infty]
$$

It follows from Definition 1.5 that $x \in \overline{\mathbb{R}}$ ．Since $\widehat{\infty}$ does not have additive absorption and the theorem states that $b>0$ ，it follows from the ordering that

$$
x \neq \pm \widehat{\infty}, \quad \text { and } \quad x \neq \pm \infty .
$$

It follows from Theorem 1.6 that $x \in \mathbb{R}$ ．

Theorem 1．11 If a, b are positive numbers less than some natural number $n \in \mathbb{N}$ ，then

$$
(\widehat{\infty}-a)-(\widehat{\infty}-b)=b-a .
$$

Proof．Observe that

$$
\begin{equation*}
(\widehat{\infty}-a)-(\widehat{\infty}-b)=\lim _{x \rightarrow 0}\left(\frac{1}{x}-a-\frac{1}{x}+b\right)=b-a \tag{四}
\end{equation*}
$$

Theorem 1.12 If $a, b \in \mathbb{R}$ are positive numbers less than some natural number $n \in \mathbb{N}$, then the quotient $(\widehat{\infty}-b) /(\widehat{\infty}-a)$ is identically one.

Proof. Observe that

$$
\begin{equation*}
\frac{\widehat{\infty}-b}{\widehat{\infty}-a}=\lim _{x \rightarrow 0}\left(\frac{\frac{1}{x}-b}{\frac{1}{x}-a}\right)=\lim _{x \rightarrow 0}\left(\frac{\frac{1}{x}-b}{\frac{1}{x}-a} \cdot \frac{x}{x}\right)=\lim _{x \rightarrow 0} \frac{1-b x}{1-a x}=1 . \tag{1}
\end{equation*}
$$

Definition 1.13 A number is a complex number $z \in \mathbb{C}$ if and only if

$$
z=x+i y, \quad \text { and } \quad x, y \in \mathbb{R} .
$$

§2 Disproof of the Riemann Hypothesis

Theorem 2.1 If $b, y_{0} \in \mathbb{R}$, if $0<b<n$ for some $n \in \mathbb{N}$, if $z_{0}=(\widehat{\infty}-b)+i y_{0}$, and if $\zeta(z)$ is the Riemann ζ function, then $\zeta\left(z_{0}\right)=1$.

Proof. Observe that the Dirichlet sum form of $\zeta[1]$ takes z_{0} as

$$
\begin{align*}
\zeta\left(z_{0}\right) & =\sum_{n=1} \frac{1}{n^{(\widehat{\infty}-b)+i y_{0}}} \\
& =\sum_{n=1} \frac{n^{b}}{n^{\infty}}\left(\cos \left(y_{0} \ln n\right)-i \sin \left(y_{0} \ln n\right)\right) \\
& =1+\sum_{n=2} 0\left(\cos \left(y_{0} \ln n\right)-i \sin \left(y_{0} \ln n\right)\right)=1 . \tag{四}
\end{align*}
$$

Theorem 2.2 The Riemann ζ function has non-trivial zeros at certain $z \in \mathbb{C}$ outside of the critical strip.

Proof. Riemann's functional form of ζ [1] is

$$
\zeta(z)=\frac{(2 \pi)^{z}}{\pi} \sin \left(\frac{\pi z}{2}\right) \Gamma(1-z) \zeta(1-z) .
$$

Theorem 2.1 gives $\zeta(\widehat{\infty}-b)$ when we set $y_{0}=0$ so we will use Riemann's equation to prove this theorem by solving for $z=-(\widehat{\infty}-b)+1$. (This value for z follows from $1-z=\widehat{\infty}-b$.) We have

$$
\begin{aligned}
\zeta[-(\widehat{\infty}-b)+1] & =\lim _{z \rightarrow-(\widehat{\infty}-b)+1}\left(\frac{(2 \pi)^{z}}{\pi} \sin \left(\frac{\pi z}{2}\right)\right) \lim _{z \rightarrow(\widehat{\infty}-b)}(\Gamma(z) \zeta(z)) \\
& =\lim _{z \rightarrow-(\bar{\infty}-b)+1}(2 \sin (\pi z / 2)) \lim _{z \rightarrow(\widehat{\infty}-b)}\left((2 \pi)^{-z} \Gamma(z) \zeta(z)\right) .
\end{aligned}
$$

For the limit involving Γ, we will compute the limit as a product of two limits. We separate terms as

$$
\lim _{z \rightarrow(\bar{\infty}-b)}\left((2 \pi)^{-z} \Gamma(z) \zeta(z)\right)=\lim _{z \rightarrow(\bar{\infty}-b)}\left((2 \pi)^{-z} \Gamma(z)\right) \lim _{z \rightarrow(\bar{\infty}-b)} \zeta(z) .
$$

From Theorem 2.1, we know the limit involving ζ is equal to one. For the remaining limit, we will insert the identity and again compute it as the product of two limits. If z approaches $(\widehat{\infty}-b)$ along the real axis, it follows from Theorem 1.12 that

$$
1=\frac{z-(\widehat{\infty}-b)}{z-(\widehat{\infty}-b)} .
$$

Inserting the identity yields

$$
\lim _{z \rightarrow(\widehat{\infty}-b)}\left((2 \pi)^{-z} \Gamma(z)\right)=\lim _{z \rightarrow(\widehat{\infty}-b)}\left((2 \pi)^{-z} \Gamma(z) \frac{z-(\widehat{\infty}-b)}{z-(\widehat{\infty}-b)}\right) .
$$

Let

$$
A=\Gamma(z)(z-(\widehat{\infty}-b)), \quad \text { and } \quad B=\frac{(2 \pi)^{-z}}{z-(\widehat{\infty}-b)}
$$

To get the limit of A into workable form we will use the property $\Gamma(z)=$ $z^{-1} \Gamma(z+1)$ to derive an expression for $\Gamma[z-(\widehat{\infty}-b)+1]$. If we can write $\Gamma(z)$ in terms of $\Gamma[z-(\widehat{\infty}-b)+1]$, then the limit as z approaches $(\widehat{\infty}-b)$ will be very easy to compute. Observe that

$$
\Gamma[z-(\widehat{\infty}-b)+1]=\Gamma[z-(\widehat{\infty}-b)+2](z-(\widehat{\infty}-b)+1)^{-1}
$$

By recursion we obtain

$$
\Gamma[z-(\widehat{\infty}-b)+1]=\Gamma(z) \lim _{n \rightarrow(\widehat{\infty}-b)} \prod_{k=1}^{n}(z-(\widehat{\infty}-b)+k)^{-1}
$$

Rearrangement yields

$$
\Gamma(z)=\Gamma[z-(\widehat{\infty}-b)+1] \lim _{n \rightarrow(\widehat{\infty}-b)} \prod_{k=1}^{n}(z-(\widehat{\infty}-b)+k)
$$

It follows that

$$
A=\Gamma[z-(\widehat{\infty}-b)+1] \lim _{n \rightarrow(\widehat{\infty}-b)} \prod_{k=0}^{n}(z-(\widehat{\infty}-b)+k)
$$

The limit of A is

$$
\lim _{z \rightarrow(\widehat{\infty}-b)} A=\Gamma[(\widehat{\infty}-b)-(\widehat{\infty}-b)+1] \lim _{n \rightarrow(\widehat{\infty}-b)} \prod_{k=0}^{n}((\widehat{\infty}-b)-(\widehat{\infty}-b)+k) .
$$

Theorem 1.11 gives $(\widehat{\infty}-b)-(\widehat{\infty}-b)=0$ so

$$
\lim _{z \rightarrow(\bar{\infty}-b)} A=\Gamma(1) \lim _{n \rightarrow(\bar{\infty}-b)} \prod_{k=0}^{n} k=0 .
$$

Direct evaluation of the limit of B gives $0 / 0$ so we need to use L'Hôpital's rule which gives

$$
\begin{aligned}
\lim _{z \rightarrow(\widehat{\infty}-b)} B & \stackrel{*}{=} \lim _{z \rightarrow(\widehat{\infty}-b)}\left(\frac{\frac{d}{d z}(2 \pi)^{-z}}{\frac{d}{d z}(z-(\widehat{\infty}-b))}\right) \\
& =\lim _{z \rightarrow(\bar{\infty}-b)} \frac{d}{d z} e^{-z \ln (2 \pi)} \\
& =-\ln (2 \pi) e^{-(\widehat{\infty}-b) \ln (2 \pi)}=\frac{-1}{e^{\widehat{\infty}}} \ln (2 \pi) e^{b \ln (2 \pi)}=0
\end{aligned}
$$

Therefore, we find that the limit of $A B$ is 0 . It follows that

$$
\begin{equation*}
\zeta[-(\widehat{\infty}-b)+1]=\lim _{z \rightarrow-(\widehat{\infty}-b)+1} 2 \sin \left(\frac{\pi z}{2}\right) \times 0=0 \tag{四}
\end{equation*}
$$

Definition 2.3 The Riemann hypothesis as defined by the Clay Mathematics Institute [2] is

The non-trivial zeros of the Riemann ζ function have real parts equal to one half.

Definition 2.4 According to the Clay Mathematics Institute [2], the trivial zeros of ζ are the even negative integers.

Remark 2.5 The zeros demonstrated in Theorem 2.2 are neither on the critical line $\operatorname{Re}(z)=1 / 2$ nor are they the negative even integers. Theorem 2.2, therefore, is the negation of the Riemann hypothesis.

References

[1] Bernhard Riemann. On the Number of Primes Less than a Given Quantity. Monatsberichte der Berliner Akademie, (1859).
[2] Enrico Bombieri. Problems of the Millennium : The Riemann Hypothesis. 2000.

