Quick Disproof of the Riemann Hypothesis

Jonathan W. Tooker

July 6, 2019

Abstract

In this brief note, we propose a set of operations for the affinely extended real number called infinity. Under the terms of the proposition, we show that the Riemann zeta function has infinitely many non-trivial zeros on the complex plane.

§1 Definitions

Definition 1.1 The number infinity, which like the imaginary number is not a real number, is defined as

$$\lim_{x \to 0^{\pm}} \frac{1}{x} = \pm \infty$$

Definition 1.2 The real number line is a 1D space extending infinitely far in both directions. It is represented in set and interval notations respectively as

$$\mathbb{R} = \{x \mid -\infty < x < \infty\}$$
, and $\mathbb{R} \equiv (-\infty, \infty)$.

Definition 1.3 A number x is a real number if and only if it is a cut in the real number line

$$(-\infty,\infty) = (-\infty,x) \cup [x,\infty)$$

Definition 1.4 The affinely extended real numbers are constructed as $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$. They are represented in set and interval notations respectively as

$$\overline{\mathbb{R}} = \{x \mid -\infty \le x \le \infty\} \quad , \qquad \text{and} \qquad \overline{\mathbb{R}} \equiv [-\infty, \infty] \quad .$$

 $\overline{\mathbb{R}}$ is called the affinely extended real number line.

Definition 1.5 A number x is an affinely extended real number $x \in \mathbb{R}$ if and only if $x = \pm \infty$ or it is a cut in the affinely extended real number line

$$[\infty,\infty] = [-\infty,x) \cup [x,\infty]$$

Theorem 1.6 If $x \in \overline{\mathbb{R}}$ and $x \neq \pm \infty$, then $x \in \mathbb{R}$.

<u>*Proof.*</u> Proof follows from Definition 1.4.

Definition 1.7 Infinity has the properties of additive and multiplicative absorption:

$$x \in \mathbb{R}$$
, $x > 0 \implies \begin{cases} \pm x + \infty = \infty \\ \pm x \times \infty = \pm \infty \end{cases}$

Proposition 1.8 Suppose the additive absorptive property of $\pm \infty$ is taken away when it appears as $\pm \widehat{\infty}$. Further suppose that $\|\widehat{\infty}\| = \infty$ and that the ordering is such that

$$n < \widehat{\infty} - b < \widehat{\infty} - a < \infty$$
$$-\infty < -\widehat{\infty} + a < -\widehat{\infty} + b < -n \quad ,$$

for any positive $a, b \in \mathbb{R}$, a < b < n, and any natural number $n \in \mathbb{N}$.

Theorem 1.9 $\widehat{\infty}$ is

$$\pm \widehat{\infty} = \lim_{x \to 0^{\pm}} \frac{1}{x}$$

<u>Proof.</u> Proof follows from the $\|\widehat{\infty}\| = \infty$ condition given in Propositon 1.8.

Theorem 1.10 If $x = \pm (\widehat{\infty} - b)$ and 0 < b < n for some $n \in \mathbb{N}$, then $x \in \mathbb{R}$.

Proof. By the ordering given in Proposition 1.8, we have

$$[\infty,\infty] = [-\infty,x) \cup [x,\infty]$$

It follows from Definition 1.5 that $x \in \overline{\mathbb{R}}$. Since $\widehat{\infty}$ does not have additive absorption and the theorem states that b > 0, it follows from the ordering that

 $x \neq \pm \widehat{\infty}$, and $x \neq \pm \infty$.

It follows from Theorem 1.6 that $x \in \mathbb{R}$.

Theorem 1.11 If a, b are positive numbers less than some natural number $n \in \mathbb{N}$, then

$$(\widehat{\infty} - a) - (\widehat{\infty} - b) = b - a$$
.

<u>Proof.</u> Observe that

$$(\widehat{\infty} - a) - (\widehat{\infty} - b) = \lim_{x \to 0} \left(\frac{1}{x} - a - \frac{1}{x} + b \right) = b - a \quad .$$

Ø

•

Ø

Theorem 1.12 If $a, b \in \mathbb{R}$ are positive numbers less than some natural number $n \in \mathbb{N}$, then the quotient $(\widehat{\infty} - b)/(\widehat{\infty} - a)$ is identically one.

<u>*Proof.*</u> Observe that

$$\frac{\widehat{\infty} - b}{\widehat{\infty} - a} = \lim_{x \to 0} \left(\frac{\frac{1}{x} - b}{\frac{1}{x} - a} \right) = \lim_{x \to 0} \left(\frac{\frac{1}{x} - b}{\frac{1}{x} - a} \cdot \frac{x}{x} \right) = \lim_{x \to 0} \frac{1 - bx}{1 - ax} = 1 \quad .$$

Definition 1.13 A number is a complex number $z \in \mathbb{C}$ if and only if

z = x + iy, and $x, y \in \mathbb{R}$.

§2 Disproof of the Riemann Hypothesis

Theorem 2.1 If $b, y_0 \in \mathbb{R}$, if 0 < b < n for some $n \in \mathbb{N}$, if $z_0 = (\widehat{\infty} - b) + iy_0$, and if $\zeta(z)$ is the Riemann ζ function, then $\zeta(z_0) = 1$.

<u>**Proof.**</u> Observe that the Dirichlet sum form of ζ [1] takes z_0 as

$$\begin{aligned} \zeta(z_0) &= \sum_{n=1}^{\infty} \frac{1}{n^{(\widehat{\infty}-b)+iy_0}} \\ &= \sum_{n=1}^{\infty} \frac{n^b}{n^{\widehat{\infty}}} \bigg(\cos(y_0 \ln n) - i \sin(y_0 \ln n) \bigg) \\ &= 1 + \sum_{n=2}^{\infty} 0 \bigg(\cos(y_0 \ln n) - i \sin(y_0 \ln n) \bigg) = 1 \quad . \end{aligned}$$

Theorem 2.2 The Riemann ζ function has non-trivial zeros at certain $z \in \mathbb{C}$ outside of the critical strip.

Proof. Riemann's functional form of ζ [1] is

$$\zeta(z) = \frac{(2\pi)^z}{\pi} \sin\left(\frac{\pi z}{2}\right) \Gamma(1-z)\zeta(1-z) \quad .$$

Theorem 2.1 gives $\zeta(\widehat{\infty} - b)$ when we set $y_0 = 0$ so we will use Riemann's equation to prove this theorem by solving for $z = -(\widehat{\infty} - b) + 1$. (This value for z follows from $1 - z = \widehat{\infty} - b$.) We have

$$\begin{aligned} \zeta \Big[-(\widehat{\infty} - b) + 1 \Big] &= \lim_{z \to -(\widehat{\infty} - b) + 1} \left(\frac{(2\pi)^z}{\pi} \sin\left(\frac{\pi z}{2}\right) \right) \lim_{z \to (\widehat{\infty} - b)} \left(\Gamma(z)\zeta(z) \right) \\ &= \lim_{z \to -(\widehat{\infty} - b) + 1} \left(2\sin\left(\pi z/2\right) \right) \lim_{z \to (\widehat{\infty} - b)} \left((2\pi)^{-z} \Gamma(z)\zeta(z) \right) \end{aligned}$$

For the limit involving Γ , we will compute the limit as a product of two limits. We separate terms as

$$\lim_{z \to (\widehat{\infty} - b)} \left((2\pi)^{-z} \Gamma(z) \zeta(z) \right) = \lim_{z \to (\widehat{\infty} - b)} \left((2\pi)^{-z} \Gamma(z) \right) \lim_{z \to (\widehat{\infty} - b)} \zeta(z) \quad .$$

From Theorem 2.1, we know the limit involving ζ is equal to one. For the remaining limit, we will insert the identity and again compute it as the product of two limits. If z approaches $(\widehat{\infty} - b)$ along the real axis, it follows from Theorem 1.12 that

$$1 = \frac{z - (\widehat{\infty} - b)}{z - (\widehat{\infty} - b)} \quad .$$

Inserting the identity yields

$$\lim_{z \to (\widehat{\infty} - b)} \left((2\pi)^{-z} \Gamma(z) \right) = \lim_{z \to (\widehat{\infty} - b)} \left((2\pi)^{-z} \Gamma(z) \frac{z - (\widehat{\infty} - b)}{z - (\widehat{\infty} - b)} \right)$$

Let

$$A = \Gamma(z) \left(z - (\widehat{\infty} - b) \right)$$
, and $B = \frac{(2\pi)^{-z}}{z - (\widehat{\infty} - b)}$

.

•

To get the limit of A into workable form we will use the property $\Gamma(z) = z^{-1}\Gamma(z+1)$ to derive an expression for $\Gamma[z - (\widehat{\infty} - b) + 1]$. If we can write $\Gamma(z)$ in terms of $\Gamma[z - (\widehat{\infty} - b) + 1]$, then the limit as z approaches $(\widehat{\infty} - b)$ will be very easy to compute. Observe that

$$\Gamma[z - (\widehat{\infty} - b) + 1] = \Gamma[z - (\widehat{\infty} - b) + 2] \left(z - (\widehat{\infty} - b) + 1\right)^{-1}$$

By recursion we obtain

$$\Gamma\left[z - (\widehat{\infty} - b) + 1\right] = \Gamma(z) \lim_{n \to (\widehat{\infty} - b)} \prod_{k=1}^{n} \left(z - (\widehat{\infty} - b) + k\right)^{-1} \quad .$$

Rearrangement yields

$$\Gamma(z) = \Gamma\left[z - (\widehat{\infty} - b) + 1\right] \lim_{n \to (\widehat{\infty} - b)} \prod_{k=1}^{n} \left(z - (\widehat{\infty} - b) + k\right) .$$

It follows that

$$A = \Gamma \left[z - (\widehat{\infty} - b) + 1 \right] \lim_{n \to (\widehat{\infty} - b)} \prod_{k=0}^{n} \left(z - (\widehat{\infty} - b) + k \right) .$$

The limit of A is

$$\lim_{z \to (\widehat{\infty} - b)} A = \Gamma \left[(\widehat{\infty} - b) - (\widehat{\infty} - b) + 1 \right] \lim_{n \to (\widehat{\infty} - b)} \prod_{k=0}^{n} \left((\widehat{\infty} - b) - (\widehat{\infty} - b) + k \right) \,.$$

Theorem 1.11 gives $(\widehat{\infty} - b) - (\widehat{\infty} - b) = 0$ so

$$\lim_{z \to (\widehat{\infty} - b)} A = \Gamma(1) \lim_{n \to (\widehat{\infty} - b)} \prod_{k=0}^{n} k = 0$$

Direct evaluation of the limit of B gives 0/0 so we need to use L'Hôpital's rule which gives

$$\lim_{z \to (\widehat{\infty} - b)} B \stackrel{*}{=} \lim_{z \to (\widehat{\infty} - b)} \left(\frac{\frac{d}{dz} (2\pi)^{-z}}{\frac{d}{dz} \left(z - (\widehat{\infty} - b) \right)} \right)$$
$$= \lim_{z \to (\widehat{\infty} - b)} \frac{d}{dz} e^{-z \ln(2\pi)}$$
$$= -\ln(2\pi) \ e^{-(\widehat{\infty} - b) \ln(2\pi)} = \frac{-1}{e^{\widehat{\infty}}} \ln(2\pi) \ e^{b \ln(2\pi)} = 0$$

Therefore, we find that the limit of AB is 0. It follows that

$$\zeta \left[-(\widehat{\infty} - b) + 1 \right] = \lim_{z \to -(\widehat{\infty} - b) + 1} 2\sin\left(\frac{\pi z}{2}\right) \times 0 = 0 \quad .$$

Definition 2.3 The Riemann hypothesis as defined by the Clay Mathematics Institute [2] is

The non-trivial zeros of the Riemann ζ function have real parts equal to one half.

Definition 2.4 According to the Clay Mathematics Institute [2], the trivial zeros of ζ are the even negative integers.

Remark 2.5 The zeros demonstrated in Theorem 2.2 are neither on the critical line Re(z) = 1/2 nor are they the negative even integers. Theorem 2.2, therefore, is the negation of the Riemann hypothesis.

References

- [1] Bernhard Riemann. On the Number of Primes Less than a Given Quantity. Monatsberichte der Berliner Akademie, (1859).
- [2] Enrico Bombieri. Problems of the Millennium : The Riemann Hypothesis. 2000.